|
АльтметрикиВ научных и научно-исследовательских публикациях альтметрия (англ. Altmetrics) — это нетрадиционная библиометрия, предлагаемая в качестве альтернативы или дополнения к более традиционным метрикам цитирования, таким как импакт-фактор и h- индекс.
Термин альтметрия был предложен в 2010 году как обобщение используемых в то время нетрадиционных методов оценивания уровня статей и имеет свои корни в хештеге Altmetrics используют открытые API на разных платформах для сбора данных с помощью открытых скриптов и алгоритмов. Первоначально альтметрика не учитывала количество цитирований, но оценивала влияние ученых с помощью онлайн-исследований, на основе данных социальных сетей, онлайн-СМИ, онлайн-справочные менеджеры и так далее. Альтметрика может быть использована для: фильтрации исследований и оценки исследователей, отбора заявок на гранты, для ранжирования недавно опубликованных статей в списке академических баз данных и поисковых систем. Альтметрики — это очень широкая группа метрик, фиксирующих различные части воздействия, которое может оказать бумага или произведение. Классификация альтметрик была предложена ImpactStory в сентябре 2012 года и публичная библиотека наук использует очень похожую классификацию:
ПросмотрыОдной из первых альтернативных метрик, которая была использована, было количество просмотров работ. Традиционно автор хотел бы публиковаться в журнале с высокой подпиской, поэтому многие люди будут иметь доступ к исследованию. С внедрением веб-технологий стало возможным фактически посчитать, как часто просматривается одна статья. Как правило, издатели считают количество представлений HTML и представлений PDF. Ещё в 2004 году BMJ опубликовал количество просмотров своих статей, которое, как было установлено, было несколько связано с цитатами. ОбсужденияОбсуждение работы можно рассматривать как метрику, отражающую потенциальное влияние статьи. Типичные источники данных для расчета этого показателя включают страницы Facebook, Google+,Twitter, Science Blogs и Wikipedia. Некоторые исследователи считают упоминания в социальных сетях цитатами. Например, цитаты на платформе социальных сетей можно разделить на две категории: внутренние и внешние. Например, первый включает ретвиты, последний относится к твитам, содержащим ссылки на внешние документы. Корреляция между упоминаниями, симпатиями и цитированием в первичной научной литературе была изучена, и в лучшем случае была обнаружена небольшая корреляция, например, для статей в PubMed. В 2008 году Journal of Medical Internet Research начал публиковать мнения итвиты. Эти «твиты» оказались хорошим показателем цитируемых статей, что побудило автора предложить «фактор Twimpact», который представляет собой количество твитов, полученных за первые семь дней публикации, а также Twindex, который процентиль ранга фактора Twimpact статьи. Однако, если внедрить использование фактора Twimpact, исследования показывают, что оценки весьма специфичны для каждого предмета, и в результате следует сравнивать факторы Twimpact между бумагами одной и той же предметной области. Хотя прошлые исследования в литературе продемонстрировали корреляцию между твиттерами и цитатами, это не причинно-следственная связь. На данный момент неясно, происходят ли более высокие цитирования в результате более пристального внимания средств массовой информации через твиттер и другие платформы, или это просто отражает качество самой статьи. Недавние исследования, проведенные на индивидуальном уровне, а не на уровне статей, поддерживают использование платформ Twitter и социальных сетей в качестве механизма повышения отдачи. Результаты показывают, что исследователи, чьи работы упоминаются в твиттере, имеют значительно более высокие h-индексы, чем исследователи, чьи работы не упоминались в твиттере. В исследовании подчеркивается роль использования основанных на обсуждении платформ, таких как твиттер, для повышения ценности традиционных метрик воздействия. Помимо Twitter и других потоков, ведение блога показало себя как мощную платформу для обсуждения литературы. Существуют различные платформы, которые отслеживают, о каких статьях пишут в блогах. Altmetric.com использует эту информацию для расчета метрик, в то время как другие инструменты просто сообщают, где происходит обсуждение, например ResearchBlogging и Chemical blogspace. РекомендацииПлатформы могут даже предоставлять формальный способ ранжирования или рекомендовать другие документы, например, как F1000Prime. СохраненияТакже полезно подсчитать, сколько раз страница была сохранена или добавлена в закладки. Считается, что люди обычно выбирают закладки для страниц, которые имеют большое отношение к их собственной работе, и в результате закладки могут быть дополнительным индикатором воздействия для конкретного исследования. Поставщики такой информации включают специализированные службы социальных закладок, такие как CiteULike и Mendeley . ЦитированияУпомянутая категория является суженным определением, отличным от обсуждения. Помимо традиционных метрик, основанных на цитировании в научной литературе, таких как полученные из Google Scholar, Crossref, PubMed Central и Scopus, в альтметриках также используются ссылки во вторичных источниках знаний. Например, ImpactStory подсчитывает, сколько раз на статью ссылалась Википедия. Plum Analytics также предоставляет метрики для различных научных публикаций, стремясь отслеживать продуктивность исследований. PLOS также является инструментом, который может использоваться для использования информации о взаимодействии. |